数学高三必修一知识之向量的的数量积
来源:网络资源 2019-05-07 19:44:22
向量的的数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a?b=x?x'+y?y'。
向量的数量积的运算律
a?b=b?a(交换律);
(λa)?b=λ(a?b)(关于数乘法的结合律);
(a+b)?c=a?c+b?c(分配律);
向量的数量积的性质
a?a=|a|的平方。
a⊥b 〈=〉a?b=0。
|a?b|≤|a|?|b|。
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。
2、向量的数量积不满足消去律,即:由 a?b=a?c (a≠0),推不出 b=c。
3、|a?b|≠|a|?|b|
4、由 |a|=|b| ,推不出 a=b或a=-b。
最新高考资讯、高考政策、考前准备、高考预测、志愿填报、录取分数线等
高考时间线的全部重要节点
尽在"高考网"微信公众号
相关推荐
高考院校库(挑大学·选专业,一步到位!)
高校分数线
专业分数线
- 日期查询