全国

热门城市 | 全国 北京 上海 广东

华北地区 | 北京 天津 河北 山西 内蒙古

东北地区 | 辽宁 吉林 黑龙江

华东地区 | 上海 江苏 浙江 安徽 福建 江西 山东

华中地区 | 河南 湖北 湖南

西南地区 | 重庆 四川 贵州 云南 西藏

西北地区 | 陕西 甘肃 青海 宁夏 新疆

华南地区 | 广东 广西 海南

  • 微 信
    高考

    关注高考网公众号

    (www_gaokao_com)
    了解更多高考资讯

您现在的位置:首页 > 高考总复习 > 高考知识点 > 高考数学知识点 > 高考复习数学不等式必考知识点

高考复习数学不等式必考知识点

来源:网络资源 2019-05-06 15:19:26

  重点复习黄金方案,就是打好基础提高能力,复习时间紧、任务重,在短短的时间内,如何提高复习的效率和质量,是每位学生所关心的,下文为数学不等式必考知识点,大家请仔细阅读。

  1.不等式的基本性质:

  性质1:如果a>b,b>c,那么a>c(不等式的传递性).

  性质2:如果a>b,那么a+c>b+c(不等式的可加性).

  性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.

  性质4:如果a>b>0,c>d>0,那么ac>bd.

  性质5:如果a>b>0,n∈N,n>1,那么an>bn,且.

  例1:判断下列命题的真假,并说明理由. 若a>b,c=d,则ac2>bd2;(假) 若,则a>b;(真) 若a>b且ab<0,则;(假) 若a若,则a>b;(真) 若|a|b2;(充要条件) 命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性. a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥) 说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.

  例2:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小. 说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想.

  练习: 1.若a≠0,比较(a2+1)2与a4+a2+1的大小.(>) 2.若a>0,b>0且a≠b,比较a3+b3与a2b+ab2的大小.(>) 3.判断下列命题的真假,并说明理由. (1)若a>b,则a2>b2;(假) (2)若a>b,则a3>b3;(真) (3)若a>b,则ac2>bc2;(假) (4)若,则a>b;(真) 若a>b,c>d,则a-d>b-c.(真).

收藏

高考院校库(挑大学·选专业,一步到位!)

高校分数线

专业分数线