全国

热门城市 | 全国 北京 上海 广东

华北地区 | 北京 天津 河北 山西 内蒙古

东北地区 | 辽宁 吉林 黑龙江

华东地区 | 上海 江苏 浙江 安徽 福建 江西 山东

华中地区 | 河南 湖北 湖南

西南地区 | 重庆 四川 贵州 云南 西藏

西北地区 | 陕西 甘肃 青海 宁夏 新疆

华南地区 | 广东 广西 海南

  • 微 信
    高考

    关注高考网公众号

    (www_gaokao_com)
    了解更多高考资讯

首页 > 高中频道 > 高一数学学习方法 > 高一数学学习方法:三角函数常见问题十种求解策略

高一数学学习方法:三角函数常见问题十种求解策略

2019-04-12 15:20:59网络资源

  一、见“给角求值”问题,运用“新兴”诱导公式

  一步到位转换到区间(-90o,90o)的公式.

  1.sin(kπ+α)=(-1)ksinα(k∈Z);2.cos(kπ+α)=(-1)kcosα(k∈Z);

  3.tan(kπ+α)=(-1)ktanα(k∈Z);4.cot(kπ+α)=(-1)kcotα(k∈Z).

  二、见“sinα±cosα”问题,运用三角“八卦图”

  1.sinα+cosα>0(或<0)óα的终边在直线y+x=0的上方(或下方);

  2.sinα-cosα>0(或<0)óα的终边在直线y-x=0的上方(或下方);

  3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内;

  4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内.

  三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。

  四、“见齐思弦”=>“化弦为一”

  已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.

  五、见“正弦值或角的平方差”形式,启用“平方差”公式:

  1.sin(α+β)sin(α-β)=sin2α-sin2β;2.cos(α+β)cos(α-β)=cos2α-sin2β.

[标签:高一数学 学习方法 三角函数]

分享:

高考院校库(挑大学·选专业,一步到位!)

高考院校库(挑大学·选专业,一步到位!)

高校分数线

专业分数线

  • 欢迎扫描二维码
    关注高考网微信
    ID:gaokao_com

  • 👇扫描免费领
    近十年高考真题汇总
    备考、选科和专业解读
    关注高考网官方服务号