高一数学教案:《函数的单调性》教学设计
来源:网络整理 2018-11-25 19:14:03
高一数学教案:《函数的单调性》教学设计
一、本节内容在教材中的地位与作用:
《函数的单调性》系人教版高中数学必修一的内容,该内容包括函数的单调性的定义与判断及其证明。在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。
二、学情、教法分析:
按现行新教材结构体系,学生只学过一次函数、二次函数、反比例函数,所以对函数的单调性研究也只能限于这几种函数。依据现有认知结构,学生只能根据函数的图象观察出“随着自变量的增大,函数值增大”的变化趋势,而不能用符号语言进行严密的代数证明,只能依据形的直观性进行感性判断而不能进行“思辩”的理性认识。所以在教学中要找准学生学习思维的“最近发展区”进行有意义的建构教学。在教学过程中,要注意学生第一次接触代数形式的证明,为使学生能迅速掌握代数证明的格式,要注意让学生在内容上紧扣定义贯穿整个学习过程,在形式上要从有意识的模仿逐渐过渡到独立的证明。
三、教学目标与教学重、难点的制定:
依据课程标准的具体要求以及基于教材内容的具体分析,制定本节课的教学目标为:
1.通过函数单调性的学习,让学生通过自主探究活动,体会数学概念的形成过程的真谛,学会运用函数图像理解和研究函数的性质。
2.理解并掌握函数的单调性及其几何意义,掌握用定义证明函数的单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。
3.能够用函数的性质解决生活中简单的实际问题,使学生感受到学习单调性的必要性与重要性,增强学生学习函数的紧迫感,激发其积极性。
在本节课的教学中以函数的单调性的概念为线,它始终贯穿于教师的整个课堂教学过程和学生的学习过程;利用函数的单调性的定义证明简单函数的单调性是对函数单调性概念的深层理解,且“取值、作差与变形、判断、结论”过程学生不易掌握。所以对教学的重点、难点确定如下:
教学重点:函数的单调性的判断与证明;
教学难点:增、减函数形式化定义的形成及利用函数单调性的定义证明简单函数的单调性。
四、教材内容简析:
本节主要内容如下:
(1)单调性的相关定义:一般地,设函数的定义域为I,区间AI:如果对于区间A内的任意两个值,当时都有,那么就说在区间A上是增加(减少)的。此时,A是单调递增(递减)区间。
注:关键词:“区间AI:”、“任意”、“都”。区间AI表明判断函数单调性首先判断函数的定义域,“任意”表明不可以用两个特定的值来确定函数是增函数还是减函数,但是可以用来否定函数是增函数或者否定函数是减函数,“都”表示单调区间中的每一个值无一例外。
如果函数在定义域的某个子集上是增加或减少的,那么就称这个函数在这个子集上具有单调性。如果函数在定义域是增加或减少的,那么就分别称这个函数为增函数或减函数,统称为单调函数。
(2)单调性的判断与证明:
①单调性的判断:图像法、定义法;(注:两个单调区间的“并”不一定是单调区间。)
②单调性的证明步骤归结为五个步骤:取值、作差与变形、判断、结论。
五、教学过程设计:
教学 环节 |
教学时间 |
教学目的 |
教学呈现 |
设计意图 |
教学方法 |
说明 |
新 授 课 |
7 分 钟
|
了解单调函数、单调区间的概念
能运用函数单调性的概念结合图象判断函数的单调性并写出单调区间
|
2.单调函数、单调区间
[教师口述]:函数是单调增函数或是单调减函数,是对定义域内某个区间而言的。如果函数在某个区间上是单调增函数(单调减函数),那么就说函数在这个区间上具有单调性。这一区间叫做的单调增(减)区间。
如果函数在定义域的某个子集上是增加的或是减少的,那么就称函数在这个子集上具有单调性。如果函数在整个定义域内是增加的或是减少的,我们分别称这个函数为增函数或减函数,统称为单调函数。
问题3:(如图)定义在区间上
的函数的图象,根据图象
说出的单调区间,以及在
每一单调区间上,是单调
增函数还是单调减函数。(移动鼠标
到图像上观察会出现单调区间)
|
介绍相关概念,使学生进一步理解单调性的概念。
使学生进一步熟悉函数的单调性与函数的图象间的关系,会从函数图象上初步判断函数的单调性;并培养学生运用数学语言进行正确表达的能力。
|
谈
话
法 |
题目及图形的给出用课件演示。
注:
对函数的单调减区间学生易错写成
的形式,要特别加以澄清,并举反例加以说明
|
教学
环节 |
教学时间 |
教学目的 |
教学呈现 |
设计意图 |
教学方法 |
说明 |
新 授 课
|
12 分 钟 |
能运用函数的单调性定义进行证明函数在某一区间上的单调性
能灵活运用概念证题 |
3.函数单调性的判断与证明
我们来看例题:
例1:说出函数的单调区间,并指明在该区间上的单调性。
解析:画出图形,并通过图形让学生自己讲出过程。
板书:详细过程。
教师过渡语言:
要了解函数某一区间是否具有单调性,从图象上进行观察是一种常用而又较为粗略的方法,严格地说,它需要根据函数单调性的定义进行证明。我们来看一个例题:
例2:画出的图像,判断它的
单调性,并加以证明。
解析:画出图形,让学生归纳。
下面利用定义证明:(略)
思考交流:请同学们试想,根据函数单调的定义证明已知函数的单调性的关键在于什么?
师生共同归纳用定义法证明函数单调的一般步骤:
(1)取值:设是给定区间上的任意两个值,且;
(2)作差与变形:作差,变形,一般化成几个因子积的形式(或平方和形式);
(3)判断:确定的符号;
(4)结论。
接下来,我们再来看一个例题:
例3:判断在(-∞,0)的单调
性,并加以证明。
分析:先画图,利用图像来判断,再利用定义来证明单调性。(让学生自己动手)
变式训练:将本题中的定义域改为(0,+ ∞),你能否给出解答吗? |
渗透用图象法来判断函数的单调性思想方法
提出问题、创设情境,培养学生积极思考、快速把握问题实质的良好思维品质。
加深学生对函数单调性定义的理解,规范解题格式
培养学生归纳总结的能力
培养学生自己动手的能力
|
谈
话
法
讲
授
法
讨
论
法 |
例1的图用课件演示 上升下降。
注:1.请学生说
出:将例1中分子上的1改为k时的单调区间。
2.通过以上的分析, 能否说例1中的函数 在定义域 内是减少的?
在讲授完,用课件展示过程。
注:例题中的注意点:
①解题格式
②防止循环论证
③作差同“0”比较
总结:利用图象法判断函数的单调性,利用定义法证明(步骤:取值,作差与变形,判断,结论)。
在讲授完,用课件展示过程。
|
教学
环节 |
教学时间 |
教学目的 |
教学呈现 |
设计意图 |
教学方法 |
说明 |
课 堂 练 习
|
7 分 钟 |
进一步巩固函数单调性的概念及证明函数单调性的方法 |
练习:
1.定义在R上的函数对任意两个不等实数a,b,总有 成立,则必有 ( )
A. 函数是先增后减函数;
B. 函数是先减后增函数;
C. 是R上的减函数;
D. 是R上的增函数。
2.设函数是R上的减函
数,求a的范围。
3.函数
在上是增函数,在上是减函
数,则()
A.-1 B.7 C.3 D.
4.求证:函数在区间上是单调增函数。 |
及时反馈,检查知识的落实情况 |
练
习
法 |
结果在课件上展示出来 |
课 后 小 结 |
2 分 钟 |
强调教学目标突出教学重点 |
本节课重点要理解函数单调性及相关概念,掌握 函数单调性的判断(图象法)与证明(定义法)的方法与 步骤(取值,作差与变形,判断,结论);通过学习,增强数形结合的意识与能力,学会从感性到理性,从具体到抽象的研究问题的方法。 |
使学生在头脑中的知识结构得到提炼、帮助掌握重点内容 |
谈
话
法 |
让学生来小结、回顾 |
布 置 作 业
|
1 分 钟 |
课后进一步掌握、巩固概念方法
|
课本习题2-3 A组:2,4,5
课后思考:
函数在上是增函数,试求出a的取值范围。 |
培养学生独立解决问题的能力 |
|
课后思考要求较 高作为选做题 |
教学 后记
|
本课是让学生通过观察函数图象的基础上,从特殊到一般的方法归纳出 函数单调性的定义及有关概念,通过例题归纳出证明函数单调性的方法、 步骤及注意点。这篇教学设计完整,思路清晰.案例首先通过实例阐述了 函数单调性产生的背景,归纳、抽象概括出了增函数、减函数的定义, 充分体现了数学教学的本质是数学思维过程的教学,符合新课程标准的 精神.例题与练习由浅入深,完整,全面.练习的设计有新意,有深度, 为学生数学思维能力、创造能力的培养提供了平台.它的特点体现在如 下几个方面:
1.强调对基本概念和基本思想的理解和掌握
由于数学高度抽象的特点,注重体现基本概念的来龙去脉.在数学中要引导 学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质.
2.注重联系,提高对数学整体的认识
数学的发展既有内在的动力,也有外在的动力.在高中数学的教学中, 要注重数学的不同分支和不同内容之间的联系,数学与日常生活的联系, 数学与其他学科的联系.
3、注重数学知识与实际的联系,发展学生的应用意识和能力
在数学教学中,应注重发展学生的应用意识;通过丰富的实例引入数学知识, 引导学生应用数学知识解决实际问题,经历探索、解决问题的过程,体会数 学的应用价值,帮助学生认识到:数学与我有关,与实际生活有关;数学是 有用的,我要用数学,我能用数学.
但是,在真正教学中也出现了一些问题:
1.时间的控制上难以把握;2.学生的单调性的证明过程写的不够完美。 |
六、板书设计:
函数的单调性
1、 函数单调性定义:
2、 单调函数、单调区间:
3、 函数单调性的判断与证明方法: |
例1:说出函数的单调区间,并指明在该区间上的单调性。 |
例2:画出的图像,判断它的
单调性,并加以证明。
例3:判断在(-∞,0)
的单调性,并加以证明。
练习答案:…… |
教学
环节 |
教学时间 |
教学目的 |
教学呈现 |
设计意图 |
教学
方法 |
说明 |
导入 新课
|
1 分 钟
|
利用生活中的实例引出课 题 |
教师引言:
日常生活中,我们有过这样的体验:从阶梯教室前向后走,逐步上升,从阶梯教室后向前走,逐步下降,上下楼梯也是一样。
(而后将其引申到函数中图像的上升与下降,接着板书课题:函数的单调性) |
明确学习内容且向学生渗透研究函数问题的一般方法。 |
讲
授
法 |
用课件演示
|
新 授 课
|
15分 钟
|
对函数的单调性有感性的认识 |
1.函数的单调性
问题1:在2003年抗击非典型性肺炎时,卫
生部门对疫情进行了通报,下图(课件中)是
北京市从4月21日至5月19日期间每日新
增病例的变化统计图。从图看出,形势从何
日开始好转?
问题2:一次函数y=kx+b中,当k>0时,y
的值随x的值的增大而 ;当k<0
时,y的值随x的值的增大而 。
思考交流:对于下图(课件中)给出的函数值y随自变量x值的变化情况吗?(移动鼠标到图像上观察会出现y随x值的变化情况)
给出实例: 用鼠标拖动红点左右移动,你会发现图像中点的坐标有何变化吗?你能找出其中的规律吗?怎样用数学语言表达函数值的增减变化吗? |
考察学生的观察能力,培养学生的数学表达能力让学生自己分析。 |
演
示
法 |
用课件演示
对函数图象的增、减情况用几何画板演示,增加直观性、提高学生兴趣
用课件演示
|
理解增、减函数的定义 |
从上推广到一般情况,给出一般图形,要求转化成符号语言,此时提出“单调增函数、单调减函数”两名词;让学生自己总结单调增、减函数的具体定义。
板书:
一般地,设函数的定义域为I,区间AI:如果对于区间A内的任意两个值,当时都有
,
那么就说在这个区间上是单调增(减)函数。
思考交流:你认为增、减函数定义中的关键
词是什么? |
让学生自己去领悟、思考、概念。
强化教学重点,加强对知识的记忆
把握概念的本质 |
演
示
法与
谈
话
法
讲
授
法 |
让学生口述
教师板书
关键词:“任意”
、“都”。
|
相关推荐
高考院校库(挑大学·选专业,一步到位!)
高校分数线
专业分数线
- 日期查询