高一数学教案:《指数函数》优秀教学设计(二)
来源:网络整理 2018-11-25 18:11:41
高一数学教案:《指数函数》优秀教学设计(二)
教学目标:
1.进一步理解指数函数的性质;
2.能较熟练地运用指数函数的性质解决指数函数的平移问题;
教学重点:
指数函数的性质的应用;
教学难点:
指数函数图象的平移变换.
教学过程:
一、情境创设
1.复习指数函数的概念、图象和性质
练习:函数y=ax(a>0且a≠1)的定义域是_____,值域是______,函数图象所过的定点坐标为 .若a>1,则当x>0时,y 1;而当x<0时,y 1.若0<a<1,则当x>0时,y 1;而当x<0时,y 1.
2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a>0且a≠1,函数y=ax的图象恒过(0,1),那么对任意的a>0且a≠1,函数y=a2x?1的图象恒过哪一个定点呢?
二、数学应用与建构
例1 解不等式:
(1); (2);
(3); (4).
小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.
例2 说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:
(1); (2); (3); (4).
小结:指数函数的平移规律:y=f(x)左右平移 y=f(x+k)(当k>0时,向左平移,反之向右平移),上下平移 y=f(x)+h(当h>0时,向上平移,反之向下平移).
相关推荐
高考院校库(挑大学·选专业,一步到位!)
高校分数线
专业分数线
- 日期查询