高一数学教案:《映射的概念》教学设计
来源:网络整理 2018-11-25 17:53:22
高一数学教案:《映射的概念》教学设计
教学目标:
1.了解映射的概念,能够判定一些简单的对应是不是映射;
2.通过对映射特殊化的分析,揭示出映射与函数之间的内在联系.
教学重点:
用对应来进一步刻画函数;求基本函数的定义域和值域.
教学过程:
一、问题情境
1.复习函数的概念.
小结:函数是两个非空数集之间的单值对应,事实上我们还遇到很多这样的集合之间的对应:
(1)A={P|P是数轴上的点},B=R,f:点的坐标.
(2)对于任意一个三角形,都有唯一确定的面积和它对应.
2.情境问题.
这些对应是A到B的函数么?
二、学生活动
阅读课本46~47页的内容,回答有关问题.
三、数学建构
1.映射定义:一般地,设A,B是两个非空集合.如果按照某种对应法则?,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B及A到B的对应法则f)叫做集合A到集合B的映射,记作:f:A→B.
2.映射定义的认识:
(1)符号“f:A→B”表示A到B的映射;
(2)映射有三个要素:两个集合,一种对应法则;
(3)集合的顺序性:A→B与B→A是不同的;
(4)箭尾集合中元素的任意性(少一个也不行),箭头集合中元素的惟一性(多一个也不行).
相关推荐
高考院校库(挑大学·选专业,一步到位!)
高校分数线
专业分数线
- 日期查询