全国

热门城市 | 全国 北京 上海 广东

华北地区 | 北京 天津 河北 山西 内蒙古

东北地区 | 辽宁 吉林 黑龙江

华东地区 | 上海 江苏 浙江 安徽 福建 江西 山东

华中地区 | 河南 湖北 湖南

西南地区 | 重庆 四川 贵州 云南 西藏

西北地区 | 陕西 甘肃 青海 宁夏 新疆

华南地区 | 广东 广西 海南

  • 微 信
    高考

    关注高考网公众号

    (www_gaokao_com)
    了解更多高考资讯

您现在的位置:首页 > 高考总复习 > 高考知识点 > 高考数学知识点 > 高中数学知识点:不等式的基本性质

高中数学知识点:不等式的基本性质

来源:e度论坛 2012-07-16 15:21:58

[标签:不等式 数学]

  1.不等式的定义:a-b>0a>b, a-b=0a=b, a-b<0a<b。

  ① 其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。

  ②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

  作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

  2.不等式的性质:

  ① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。

  不等式基本性质有:

  (1) a>bb<a (对称性)

  (2) a>b, b>ca>c (传递性)

  (3) a>ba+c>b+c (c∈R)

  (4) c>0时,a>bac>bc

  c<0时,a>bac<bc。

  运算性质有:

  (1) a>b, c>da+c>b+d。

  (2) a>b>0, c>d>0ac>bd。

  (3) a>b>0an>bn (n∈N, n>1)。

  (4) a>b>0>(n∈N, n>1)。

  应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。

  ② 关于不等式的性质的考察,主要有以下三类问题:

  (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

  (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

  (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

相关阅读:

高一知识:高中数学数列公式总结

立体几何题常规解法与优化解法的对比

高三数学常考知识点:不等式

高考数学函数复习方法:导数是解题关键

收藏

高考院校库(挑大学·选专业,一步到位!)

高校分数线

专业分数线