全国

热门城市 | 全国 北京 上海 广东

华北地区 | 北京 天津 河北 山西 内蒙古

东北地区 | 辽宁 吉林 黑龙江

华东地区 | 上海 江苏 浙江 安徽 福建 江西 山东

华中地区 | 河南 湖北 湖南

西南地区 | 重庆 四川 贵州 云南 西藏

西北地区 | 陕西 甘肃 青海 宁夏 新疆

华南地区 | 广东 广西 海南

  • 微 信
    高考

    关注高考网公众号

    (www_gaokao_com)
    了解更多高考资讯

首页 > 高中频道 > 竞赛联赛知识 > 代数式的变形(整式与分式)

代数式的变形(整式与分式)

2009-08-31 11:16:45网络来源

       在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,现结合实例对代数式的基本变形,如配方、因式分解、换元、设参、拆项与逐步合并等方法作初步介绍.

1.  配方

在实数范围内,配方的目的就是为了发现题中的隐含条件,以便利用实数的性质来解题.

例1          (1986年全国初中竞赛题)设a、b、c、d都是整数,且m=a2+b2,n=c2+d2,mn也可以表示成两个整数的平方和,其形式是______.

解mn=(a2+b2)(c2+d2)

=a2c2+2abcd+b2d2+a2d2+b2c2-2abcd

=(ac+bd)2+(ad-bc)2

=(ac-bd)2+(ad+bc)2,

所以,mn的形式为(ac+bd)2+(ad-bc)2或(ac-bd)2+(ad+bc)2.

例2(1984年重庆初中竞赛题)设x、y、z为实数,且

(y-z)2+(x-y)2+(z-x)2

=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2.

的值.

解  将条件化简成

2x2+2y2+2z2-2xy-2x2-2yz=0

∴(x-y)2+(x-z)2+(y-z)2=0

∴x=y=z,∴原式=1.

2.因式分解

前面已介绍过因式分解的各种典型方法,下面再举几个应用方面的例子.

例3(1987年北京初二数学竞赛题)如果a是x2-3x+1=0的根,试求

的值.

解  ∵a为x2-3x+1=0的根,

∴ a2-3a+1=0,,且=1.

原式

说明:这里只对所求式分子进行因式分解,避免了解方程和复杂的计算.

3.换元

换元使复杂的问题变得简洁明了.

例4 设a+b+c=3m,求证:

(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0.

证明 令p=m-a,q=m-b,r=m-c则

p+q+r=0.

P3+q3+r3-3pqr=(p+q+r)(p2+q2+r2-pq-qr-rp)=0

∴p3+q3+r3-3pqr=0

即  (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0

例5 (民主德国竞赛试题) 若,试比较A、B的大小.

解 设

.

∵2x>y     ∴2x-y>0, 又y>0,

可知  ∴A>B.

4.设参

当已知条件以连比的形式出现时,可引进一个比例系数来表示这个连比.

例6 若求x+y+z的值.

解  令

则有   x=k(a-b), y=(b-c)k z=(c-a)k,

∴x+y+z=(a-b)k+(b-c)k+(c-a)k=0.

例7 已知a、b、c为非负实数,且a2+b2+c2=1,

,求a+b+c的值.

解  设 a+b+c=k

则a+b=k-c,b+c=k-a,a+c=k-b.

由条件知

即   

∴a2k-a3+b2k-b3+c2k-c3=-3abc,

∴(a2+b2+c2)k+3abc=a3+b3+c3.

∵a2+b2+c2=1,

∴k=a3+b3+c3-3abc

=(a+b)3-3a2b-3ab2+c3-3abc

=(a+b+c)[(a+b)2+c2-(a+b)c]-3ab(a+b+c),

=(a+b+c)(a2+b2+c2-ab-bc-ca),

∴k=k(a2+b2+c2-ab-bc-ac),

∴k(a2+b2+c2-ab-bc-ca-1)=0,

∴k(-ab-bc-ac)=0.

若K=0, 就是a+b+c=0.

若-ab-bc-ac=0,

即 (a+b+c)2-(a2+b2+c2)=0,

∴(a+b+c)2=1,

∴a+b+c=±1

综上知a+b+c=0或a+b+c=±1

5.“拆”、“并”和通分

下面重点介绍分式的变形:

(1) 分离分式  为了讨论某些用分式表示的数的性质,有时要将一个分式表示为一个整式和一个分式的代数和.

例8(第1届国际数学竞赛试题)证明对于任意自然数n,分数皆不可约.,

证明  如果一个假分数可以通约,化为带分数后,它的真分数部分也必定可以通约.

而    

显然不可通约,故不可通约,从而也不可通约.

(2) 表示成部分分式  将一个分式表示为部分分式就是将分式化为若干个真分式的代数和.

例9 设n为正整数,求证:

 

 
证明  令

通分,

比较①、②两式,得A-B=0,且A+B=1,即A=B=.

令k=1,2,…,n得 

(3)通分  通分是分式中最基本的变形,例9的变形就是以通分为基础的,下面再看一个技巧性较强的例子.

例10(1986年冬令营赛前训练题)

已知

求证:.

证明  

6.其他变形

例11 (1985年全国初中竞赛题)已知x(x≠0,±1)和1两个数,如果只许用加法、减法和1作被除数的除法三种运算(可用括号),经过六步算出x2.那么计算的表达式是______.

解   x2=x(x+1)-x

或  x2=x(x-1)+x

例12 (第3届美国中学生数学竞赛题)设a、b、c、d都是正整数,且a5=b4,c3=d2,c-a=19,求d-b.

解  由质因数分解的唯一性及a5=b4,c3=d2,可设a=x4,c=y2,故

19=c-a=(y2-x4)=(y-x2)(y+x2)

   解得  x=3.  y=10.   ∴   d-b=y3-x5=757

                           练习 七

1选择题

(1)(第34届美国数学竞赛题)把相乘,其乘积是一个多项式,该多项式的次数是(  )

(A)2         (B)3          (C)6            (D)7       (E)8

(3) 已知的值是(  ).

(A)1      (B)0     (C)-1     (D)3

(3)(第37届美国中学数学竞赛题)假定x和y是正数并且成反比,若x增加了p%,则y减少了(  ).

(A)p%     (B)%        (C)%          (D)%   (E)%

2填空题

(1)(x-3)5=ax5+bx4+cx3+dx2+ex+f,则a+b+c+d+e+f=________,  b+c+d+e=_______.

(2)若=_____.

(3)已知y1=2x,y2=,则y1y1986=______

3若(x-z)2-4(x-y)(y-z)=0,试求x+z与y的关系.

4(1985年宁夏初中数学竞赛题)把写成两个因式的积,使它们的和为,求这两个式子.

5.若x+3y+5z=0,2x+4y+7z=0.求的值.

6.已知x,y,z为互不相等的三个数,求证

7已知a2+c2=2b2,求证

8.设有多项式f(x)=4x4-4px3+4qx2+2q(m+1)x+(m+1)2,求证:

如果f(x)的系数满足p2-4q-4(m-1)=0,那么,f(x)恰好是一个二次三项式的平方.

9.设(a+b)(b+c)(c+d)(d+a)=(a+b+c+d)(bcd+cda+dab+abc).求证:ac=bd.

 

练习七

1.C.C.E

2.(1)-32,210    (2)    (3)2

3.略.

4.

5.    6.略,    7.略.

8.∵p2-4q-4(m+1)=0,   ∴4q=p2-4(m+1)=0,

∴f(x)

=4x4-4px3+[p2-4(m+1)]x2+2p·(m+1)x+(m+1)2

=4x4+p2x2+(m+1)2-4px3-4(m+1)x2+2p(m+1)x

=[2x2-px-(m+1)]2.

9.令a+b=p,c+d=q,由条件化为

pq(b+c)(d+a)=(p+q)(cdp+adq),

展开整理得cdp2-(ac+bd)+pq+abq2=0,

即(cp-bq)(dp-aq)=0.

于是cp=bq或dp=aq,即c(a+b)=b(c+a)或d(a+b)=a(c+d).

均可得出ac=bd.

[标签:整式 分式 代数]

分享:

高考院校库(挑大学·选专业,一步到位!)

高考院校库(挑大学·选专业,一步到位!)

高校分数线

专业分数线

  • 欢迎扫描二维码
    关注高考网微信
    ID:gaokao_com

  • 👇扫描免费领
    近十年高考真题汇总
    备考、选科和专业解读
    关注高考网官方服务号